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Shallow convection subdivided into 2 subgroups:

Forced shallow convection: Active shallow convection:
generated by non-buoyant updrafts, generated by buoyant updrafts.
very small vertical extent Tower-like but not as tall as deep
(few tens or hundreds of m) convection.

Important radiative effect Radiative and thermodynamic effects




* Assume a Gaussian pdf near the surface based on similarity with H, IE and w*
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Active convection

Virtual Potential temperature Forced CO”Y?Ct'O”

is indicator of buoyancy Dry plume .-
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e Surface distribution

All updrafts generating <1
entrainment are cloudy:

added latent heat / LFC
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Cloud top
Typical convection scheme: 2
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Addition of:

Ice (Bryan and Fritch 2004) — piecewise linear (made
numerically stable with tanh) between water vapor saturation
and 0 °C

Precipitable water: a simple liquid+ice threshold a la
(Hohenegger and Bretherton 2011)

Precipitation (efficiency of precipitable water dependent on
cloud thinkness Emanuel 1991)

Unsaturated downdraft

Scaling of lateral entrainment with convection circulation

(cloud depth if rain): c LCL
eE=  —
Z cloud top
HFJ o J/

shallow scheme d V. )
eep convection scaling

So far no changes in surface pdf, next step (cold pools with
Zhiming Kuang)
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Test case of ARM SGP Guichard (2004): deep convection over land SGP
Good timing of convection (shallow and deep)
Too shallow: no cold pools

COLUMBIA |ENGINEERING D'Andrea et al., 2013, JAS, (submitted)

The Fu Foundation School of Engineering and Applied Science



306.5 T T T | | T |

306 |-
305.5|
3
q>>
305
304.5) E 6, range of updrafts
-==9, of environment
GV of the ML
304 . . . . ; .
9 10 11 12 13 14 15 16
Local Time (h)
Role of pdf of updrafts

3 regimes: forced, active shallow, deep.
This is our definition of deep, one among many
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Precipitation
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Higher autoconversion threshold for rain (0.25 to 2g/kg):
- less precipitable water, higher clouds (more humid profiles), near similar surface rain,
no change in timing (trigger independent of precip — at east in the model), no change in
moist adiabat

Local Time (h)

Very high autoconversion threshold for rain (4g/kg):

- all rain evaporates before reaching the ground, lower clouds (stuck in congestus
phase) @ surfaseTaInE prideasity current => no entrainment scaling/organization)
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Higher autoconversion threshold for rain (0.25 to 2g/kg):
- profiles more humid in the inversion, drier the cloud layer, colder cumulus layer
Very high autoconversion threshold for rain (4g/kg):

Very humid subcloud layer (rain reevaporation), more humid cloud layer, drier inversion
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